Реактивная (ёмкостная проводимость). Активная и реактивная проводимости определяются из условия равенства углов сдвига фаз Реактивная проводимость формула

Проводимости

Комплексной проводимостью называется отношение комплексного тока к комплексному напряжению

где y=1/z - величина обратная полному сопротивлению, называется полной проводимостью.

Комплексная проводимость и комплексное сопротивление взаимно обратны. Комплексную проводимость можно представить в виде

где - действительная часть комплексной проводимости, называется активной проводимостью; - значение мнимой части комп-лексной проводимости, называется реактивной проводимостью;

Из (3.30) и ( 3.29) следует, что для схемы, представленной на рис. 3.12 , комплексная проводимость

и называются соответственно активной, индуктивной и емкостной проводимостями.

Реактивная проводимость

Индуктивная и емкостная проводимости - арифметические величины, а реактивная проводимость b - алгебраическая величина и может быть как больше, так и меньше нуля. Реактивная проводимость b ветви, содержащей только индуктивность, равна индуктивной проводимости , а реактивная проводимость b ветви, содержащей только емкость, равна емкостной проводимости с обратным знаком, т. е. .

Сдвиг по фазе между напряжением и током зависит от соотношения индуктивной и емкостной проводимостей. Для схемы по рис. 3.12 на рис. 3.14 представлены векторные диаграммы для трех случаев, а именно При построении этих диаграмм начальная фаза напряжения принята равной нулю, поэтому , как это следует из ( 3.28), равны и противоположны по знаку ().

Рассматривая схему на рис. 3.12 в целом как пассивный двухполюсник, можно заметить, что при заданной частоте она эквивалентна в первом случае параллельному соединению сопротивления и индуктивности, во втором - сопротивлению и в третьем - параллельному соединению сопротивления и емкости. Второй случай называется резонансом. При заданных L и С соотношение между зависит от частоты, а поэтому от частоты зависит и вид эквивалентной схемы.

Обратим внимание на то, что в схеме рис. 3.12 каждая из параллельных ветвей содержит по одному элементу. Поэтому получилось такое простое выражение для У, в которое проводимости элементов входят как отдельные слагаемые.

Заметим, что обозначения применяются не только для сопротивлений и проводимостей, но и для элементов схемы, характеризуемых этими величинами. В таких случаях элементам схемы дают те же самые наименования, какие присвоены величинам, которые обозначаются этими буквами. Комплексные сопротивления или проводимости как элементы схемы имеют условное обозначение в виде прямоугольника (см. рис. 3.1). Точно так же обозначают реактивные сопротивления или проводимости, если хотят отметить, что они могут быть как индуктивными, так и емкостными сопротивлениями или проводимостями.

Проводимость

Когда начинающие радиолюбители видят уравнение для расчета общего сопротивления параллельной цепи, у них возникает естественный вопрос , "Откуда оно взялось?". В этой статье мы попытаемся дать ответ на данный вопрос.

Ввиду того что электроны, сталкиваясь с частицами проводника, преодолевают некоторое сопротивление движению, принято говорить, что проводники обладают электрическим сопротивлением . Сопротивление обозначается буквой "R" и измеряется в Омах. Однако, всякий проводник можно характеризовать не только его сопротивлением, но и так называемой проводимостью — способностью проводить электрический ток. Проводимость есть величина, обратная сопротивлению:

Чем больше сопротивление, тем меньше проводимость и наоборот. Сопротивление и проводимость являются противоположными способами обозначения одного и того же электрического свойства материалов. Если при сравнении сопротивлений двух компонентов выясняется, что сопротивление компонента "А" составляет половину от сопротивления компонента "Б", то мы можем альтернативно выразить эту связь, сказав, что проводимость компонента "А" в два раза выше проводимости компонента "Б". Если сопротивление компонента "А" составляет одну треть от сопротивления компонента "Б", то можно сказать, что компонент "А" в три раза проводимее компонента "Б", и так далее.

Обозначается проводимость буквой "G", а ее единицей измерения первоначально было "Мо", то есть "Ом" записанный задом наперед. Но, несмотря на уместность этой единицы, позже она была заменена на "Сименс" (сокращенно - См или S).

Теперь давайте вернемся к нашему примеру параллельной цепи. Если рассматривать ее с точки зрения сопротивления, то наличие нескольких путей (ветвей) для потока электронов снижает общее сопротивление этой цепи, так как электронам легче течь по нескольким путям, чем по одному, обладающему некоторым сопротивлением. Если рассматривать цепь с точки зрения проводимости, то несколько путей для потока электронов наоборот, увеличивают проводимость схемы.

Общее сопротивление параллельной цепи меньше любого из ее отдельных сопротивлений, поскольку несколько параллельных ветвей создают меньше препятствий потоку электронов, чем каждый резистор по отдельности:

Общая проводимость параллельной цепи больше проводимости любой ее отдельной ветви, поскольку параллельно соединенные резисторы лучше проводят электрический ток, чем каждый резистор по отдельности:

Точнее будет сказать, что общая проводимость параллельной цепи равна сумме ее отдельных проводимостей:

Зная, что проводимость равна 1/R, мы можем преобразовать эту формулу в следующий вид:

Из данной формулы видно, что общее сопротивление параллельной цепи будет равно:

Ну вот мы и нашли ответ на поставленный в начале статьи вопрос! Вам следует знать, что проводимость очень редко используется на практике, в связи с чем данная статья носит чисто образовательный характер.

Краткий обзор:

  • Проводимость - это величина противоположная сопротивлению.
  • Проводимость обозначается буквой "G" и измеряется в Мо или Сименсах.
  • Математически проводимость обратна сопротивлению: G=1/R

В курсе общей физики для расчета электрических цепей используют, в основном, законы Ома и Кирхгофа, в которые входят напряжения, токи и сопротивления. Однако для расчета сложных электрических цепей, и в особенности цепей переменного тока, целесообразно вместо сопротивления использовать проводимость.

Проводимость в цепи постоянного тока g - величина, обратная сопротивлению

Единицей измерения проводимости в СИ является сименс (в честь немецкого электротехника XIX в. Э. В. Сименса).

1 Сим - это проводимость проводника сопротивлением 1 Ом.

В цепях переменного тока, как известно, существует три типа сопротивлений: активное R, реактивное и полное г. По аналогии с этим введено и три типа проводимостей: активная g, реактивная b и полная у. Однако только полная проводимость у является величиной, обратной полному сопротивлению :

Для введения активной g и реактивной b проводимостей рассмотрим цепь переменного тока из последовательно соединенных активного R и индуктивного сопротивлений (рис. 1-25, а). Построим для нее векторную диаграмму (рис. 1-25, б). Ток в цепи разложим на активную и реактивную составляющие и от полученного треугольника токов перейдем к треугольнику сопротивлений (рис. 1-25, в). Из последнего имеем:

Из векторной диаграммы (см. рис. 1-25, б) с учетом формулы (1.30) имеем:

где активная проводимость,

где реактивная проводимость.

Теперь установим взаимосвязь между проводимостями. Для рассматриваемой цепи имеем:

Подставив значения соответственно из соотношений (1.31) и (1.32), получим:

где полная проводимость цепи.

По аналогии с треугольником сопротивлений (рис. 1-25, в) строим треугольник проводимостей (рис. 1-25, г). По аналогии с индуктивным и емкостным сопротивлениями различают индуктивную и емкостную проводимости.

В случае разветвленной цепи (рис. 1-26, а) схему легко преобразовать в так называемую эквивалентную схему (рис. 1-26, б), в которой две ветви заменены одной с соответствующими эквивалентными активным и

реактивным сопротивлениями. Расчет последних сопротивлении, как и других параметров схемы, проще с использованием проводимостей. Установим основные закономерности для проводимостей в разветвленной цепи.

Выразим общий ток через его составляющие или эквивалентные проводимости:

В свою очередь, активная составляющая общего тока равна сумме активных составляющих токов ветвей:

т. е. эквивалентная активная проводимость разветвления равна арифметической сумме активных проводимостей ветвей.

Так как реактивные составляющие ветвей рассматриваемой цепи находятся в противофазе, то для реактивной составляющей общего тока имеем:

т. е. эквивалентная реактивная проводимость разветвления равна алгебраической сумме реактивных проводимостей параллельных ветвей, при этом берется со знаком «плюс», а - со знаком «минус».

Главная > Книги > Электроника

2.8. Параллельное соединение R, L, С

Если к зажимам электрической цепи, состоящей из параллельно соединенных элементов R, L, С (рисунок 2.18), приложено гармоническое напряжение u = Umcosωt , то гармонический ток, проходящий через эту цепь, равен алгебраической сумме гармонических токов в параллельных ветвях (первый закон Кирхгофа): i = iR + iL + iC .

Ток iR в сопротивлении R совпадает по фазе с напряжением и , ток iL в индуктивности L отстает, а ток iC в емкости С опережает напряжение на π /2 (рисунок 2.19).

Следовательно, суммарный ток i в цепи равен

(2.20)

Уравнение (2.20) представляет собой тригонометрическую форму записи первого закона Кирхгофа для мгновенных значений токов. Входящая в него величина называется реактивной проводимостью цепи , которая в зависимости от знака может иметь индуктивный (b > 0) или емкостный (b < 0) характер. В отличие от реактивной проводимости b активная проводимость g = l/R всегда положительна.

Для нахождения Im и φ воспользуемся векторной диаграммой, соответствующей уравнению (2.20) (рисунок 2.20, а и б). Прямоугольный треугольник с катетами IR и и гипотенузой I называется треугольником токов. Треугольник токов построен на рисунке 2.20, а для b >0 , а на рисунке 2.20, б − для b < 0 .

Из треугольника токов следует, что или I = yU; Im=yUm

Здесь (2.21)

полная проводимость рассматриваемой параллельной цепи.

Активная, реактивная и полная проводимости относятся к числу основных понятий, применяемых в теории электрических цепей.

Угол фазового сдвига тока i относительно напряжения и равен:

. (2.22)

Если задано напряжение и = Umcos(ωt + y) на зажимах цепи с параллельно соединенными R, L и С , то ток определяется по формуле

i = yUmcos(ωt + y - φ ) .

Угол φ , как и в предыдущем случае, отсчитывается на временной диаграмме ωt от напряжения к току, а на векторной диаграмме - от тока к напряжению; он является острым или прямым углом

|φ | .

Угол φ положителен при индуктивном характере цепи, т.е. при b > 0 ; при этом ток отстает по.фазе от напряжения. Угол φ отрицателен при емкостном характере цепи, т.е. при b < 0 ; при этом ток опережает по фазе напряжение. Ток совпадает с напряжением по фазе при b = bR - bC = 0 , т.е. при равенстве индуктивной и емкостной проводимостей. Такой режим работы электрической цепи называется резонансом токов.

Из (2.21) и (2.22) следует, что активная и реактивная проводимости цепи связаны с полной проводимостью формулами:

g = ycosφ ; b = уsinφ . (2.23)

Умножив правые и левые части выражений (2.23) на действующее значение напряжения U , получим действующие значения токов в ветвях с активной и реактивной проводимостями изображаемые катетами треугольника токов и называемые активной и реактивной составляющими тока:

Ia = gU = ycosφ U = Icosφ ;

Ip = bU = ysinφ U = Isinφ .

Как видно из треугольников токов и уравнений (2.24), активная и реактивная составляющие тока связаны с действующим значением суммарного тока формулой

.

Разделив стороны треугольника токов на U , получим прямоугольный треугольник проводимостей, подобный треугольнику напряжений (рисунок 2.21, а, б ).

Треугольник проводимостей служит геометрической интерпретацией уравнений (2.21) и (2.22); активная проводимость g откладывается по горизонтальной оси вправо, а реактивная проводимость b в зависимости от ее знака откладывается вниз (b > 0) или вверх (b < 0) .

Угол φ в треугольнике проводимостей отсчитывается, от гипотенузы у к катету g , что соответствует отсчету φ в треугольнике токов от I = yU к Ia = gU .

Для характеристики конденсаторов, представляемых цепью с емкостной и активной проводимостями, применяется понятие добротность конденсатора QC = b/g = ωCR , которое равнозначно тангенсу угла |φ | конденсатора. Обратная величина называется тангенсом угла диэлектрических потерь конденсатора tgδ = l/QC (угол диэлектрических потерь δ дополняет угол |φ | до 90°).

Чем больше сопротивление R , тем больше (при прочих равных условиях) добротность конденсатора и тем меньше угол потерь.

Добротность конденсаторов для разных частот и диэлектриков колеблется в широких пределах, примерно от 100 до 5000. Слюдяные конденсаторы обладают большей добротностью, чем керамические. Добротность конденсаторов, применяемых в высокочастотной технике, примерно в 10 раз превышает добротность индуктивных катушек.

Проводимости

Комплексной проводимостью называется отношение комплексного тока к комплексному напряжению

где y=1/z - величина обратная полному сопротивлению, называется полной проводимостью .
Комплексная проводимость и комплексное сопротивление взаимно обратны. Комплексную проводимость можно представить в виде

где - действительная часть комплексной проводимости, называется активной проводимостью ; - значение мнимой части комп-лексной проводимости, называется реактивной проводимостью ;

Из () и ( 3.29) следует, что для схемы, представленной на рис. 3.12 , комплексная проводимость

где


и называются соответственно
активной, индуктивной и емкостной проводимостями .
Реактивная проводимость


Индуктивная и емкостная проводимости - арифметические величины, а реактивная проводимость b - алгебраическая величина и может быть как больше, так и меньше нуля. Реактивная проводимость b ветви, содержащей только индуктивность, равна индуктивной проводимости , а реактивная проводимость b ветви, содержащей только емкость, равна емкостной проводимости с обратным знаком, т. е. .


Сдвиг по фазе между напряжением и током зависит от соотношения индуктивной и емкостной проводимостей. Для схемы по на рис. 3.14 представлены векторные диаграммы для трех случаев, а именно
При построении этих диаграмм начальная фаза напряжения принята равной нулю, поэтому , как это следует из ( 3.28), равны и противоположны по знаку ().
Рассматривая схему на рис. 3.12 в целом как пассивный двухполюсник, можно заметить, что при заданной частоте она эквивалентна в первом случае параллельному соединению сопротивления и индуктивности, во втором - сопротивлению и в третьем - параллельному соединению сопротивления и емкости. Второй случай называется резонансом. При заданных
L и С соотношение между зависит от частоты, а поэтому от частоты зависит и вид эквивалентной схемы.
Обратим внимание на то, что в схеме рис. 3.12 каждая из параллельных ветвей содержит по одному элементу. Поэтому получилось такое простое выражение для У, в которое проводимости элементов входят как отдельные слагаемые.
Заметим, что обозначения
применяются не только для сопротивлений и проводимостей, но и для элементов схемы, характеризуемых этими величинами. В таких случаях элементам схемы дают те же самые наименования, какие присвоены величинам, которые обозначаются этими буквами. Комплексные сопротивления или проводимости как элементы схемы имеют условное обозначение в виде прямоугольника (см. рис. 3.1). Точно так же обозначают реактивные сопротивления или проводимости, если хотят отметить, что они могут быть как индуктивными, так и емкостными сопротивлениями или проводимостями.